Coriolis Flow Mater (Mass Flow)

Topics (หัวข้อการอบรม)

- Theory
- Basic Setup/ Commissioning
- Basic Installation
- Basic Repair
- Basic Maintenance
- Basic Calibration
- Case Study

00_Theory Coriolis Flow meter

Theory

ทฤษฎีและลักษณะการทำงานของ Mass Flow Meter

Gaspard Gustave de Coriolis

- Born May 21st, 1792 in Paris, France
- Died September 19th, 1843 in Paris
- Mathematician, mechanical engineer and scientist
- Best known for his work on the Coriolis effect
- Coriolis' papers deal with the transfer of energy in rotating systems like waterwheels

http://en.wikipedia.org/wiki/Gaspard-Gustave_Coriolis

Coriolis sensor (general remarks)

Some general remarks concerning all Coriolis sensors:

- Dual-tube design / single-tube design
 - Dual-tube instruments are intrinsically balanced against external disturbances because the tube movements compensate each other.
 - Endress+Hauser puts extra effort into the design of single-tube instruments. With competitor's single-tube instruments, vibration immunity is often a weak point.

Material choice

- Stainless steel has a relatively large thermal expansion coefficient (= reacts to temperature raise with high expansion). If a steel meter is specified above 100 °C, it has to feature bent tubes in order to avoid material damage due to thermal expansion stress. The same applies to most alloy materials (Hastelloy C).
- Titanium has a lower thermal expansion coefficient. All straight tube meters specified above 100 °C are made of titanium.

Traditional Mass Flow Measurement

Measurement Signal

If fluid is flowing, the Coriolis Force introduces a time shift of the swinging points A and B. Point B passes zero before point A . The bigger the flow the bigger the shift.

- w=Angular velocity
- Fc=Coriolis force
- $\Delta \phi$ =time shift
- A,B=Sensors
- y=Amplitude
- t=Time

Frequency-shift by Mass-shift

The resonance frequency of a swinging system is dependent on the stiffness c and the mass m.

The bigger the mass at constant stiffness, the lower the resonance frequency

Frequency-shift by Mass-shift

- The higher the mass the slower the frequency!
- The smaller the mass the higher the frequency!

The higher the density the bigger the mass

- f_R = Resonant frequency
- m_t = Tube mass
- m_{fl} = Fluid mass
- $\rho_{\rm fl}$ = Fluid density
- c = Constant

$$f_R = f(\rho_{fl})$$

The higher the density, the lower the resonance frequency

Overview of direct measuring variables

- Dφ=Phase shift
- m=Mass flow
- fR=Resonance frequency
- r=Density
- W= Resistance (PT1000)
- T=Temperature

Overview of calculated values

- V=Volume flow V=m/r
- VN=Normvolume flow = Volume flow at fixed p and T
 VN= m/rN (note: rN is a fixed value for each fluid)
- c=Concentration

Concentration can be calculated from density

- \rightarrow see specific training (advanced module)
- n=Viscosity

Viscosity can be calculated from oscillation damping. Viscosity measurement is only available with the Promass I sensor

Advantages of Coriolis Mass Flowmeter

- Measurement of Conductive and Non-Conductive Liquids
 - Standardisation on single flow technology
- Mass measurement independent of Temperature
 - Improved process control and stability due to eliminating of temperature influence
- High accuracy / High repeatability
 - Improved process control due to reduction in fluctuation of measured value
- Measurement independent of viscosity and density changes
 - High process stability with changing fluid properties
- High Operating Range
 - Improved process control also at low flow condition
- No moving parts
 - Reduced maintenance cost due to reduced wear and tear and improved operating time

Volume 1 Volume 2

Volume 1	≠	Volume 2
Mass 1	=	Mass 2

Proline transmitter overview

100

- Ultra compact
- Full performance

150

Thermal Flowmeters for gases and liquids

200

- Compact field transmitter for process industries
- Two-wire transmitter with reduced installation cost and easy to integrate

300

- Compact field transmitter for process industries
- Also suitable for harsh process environment

Proline transmitter overview

400

- Dedicated to water applications
- Polycarbonate housing

500

Remote

- Specialist for applications where electronics at sensor is not feasible
- All Ex approvals

Digital Remote

- With up to 4 IOs
- For mixed ex installations
- 800
 - Battery operated for remote locations
 - covered • With data logging and GSM/GPRS communication

X Not

INTERNAL

Wissanukorn P.

Endress+Hauser

Proline transmitter overview

Sensor Design

Questions

