E+H Flow Product

E+H Flow Product

Flow Measurement Principle

Nat Warintarawej

Flow technologies overview

Promag	Promass	Prowirl	Prosonic	Thermal
		Sec.		
Fluids	Fluids	Fluids	Fluids	Fluids
 Conductive liquids Conductivity > 5µs 	 All Fluids Careful with inhomogeneous liquids and gas fraction All Gases 	 All Liquids Careful with inhomogeneous liquids and high viscosity All Steam All Gases 	• All Liquids Careful with inhomogeneous liquids, solid content and high viscosity	 All Gases Careful with mixtures and dirty/wet gases
Variables	Variables	Variables	Variables	Variables
 Volume 	 Mass Density Temperature Viscosity 	 Volume Saturated steam Mass Temperature 	 Volume Sound Velocity 	MassTemperature

E+H FLOW PRODUCT Measuring Principle

$$U_e = B \times L \times v$$

B = Strength of Magnetic FieldL = Length of Conductorv = Velocity of Conductor

U = Induced voltage v = Flow velocity

Approx. 300 μV per m/s

$$Q = v x A$$

Q = Volume flow v = Flow velocity A = Pipe area

Main Components of an EMF

Ranges of Conductivity in Liquids

Flow technologies overview

Promag	Promass	Prowirl	Prosonic	Thermal
	Contraction of the second seco			L.
Fluids	Fluids	Fluids	Fluids	Fluids
 Conductive liquids Conductivity > 5μs Water > 20μs 	 All Fluids Careful with inhomogeneous liquids and gas fraction All Gases 	 All Liquids Careful with inhomogeneous liquids and high viscosity All Steam All Gases 	• All Liquids Careful with inhomogeneous liquids, solid content and high viscosity	 All Gases Careful with mixtures and dirty/wet gases
Variables	Variables	Variables	Variables	Variables
 Volume 	 Mass Density Temperature Viscosity 	 Volume Saturated steam Mass Temperature 	VolumeSound Velocity	MassTemperature

Visualization of Coriolis force in the meter tube

Mass flow measuring signal

- A, B = sensor location
- y = pipe movement at A, B
- t = time
- Δφ = phase shift
 (= time shift between
 pipe movement at A, B)

The larger the mass, the higher the phase shift. The faster the mass, the higher the phase shift.

$$\Delta \phi \sim \mathbf{m}^* \mathbf{v} = \mathbf{m}^*$$

Density measurement (using the resonance frequency)

- Fluids with same volume but different mass \Rightarrow different density
- A fluid with higher density produces lower resonance frequency (= frequency at which the lowest energy has to be supplied to keep the system oscillating)

Overview of direct measuring variables

 Δφ 	=	Phase shift
• m	=	Mass flow
 f_R ρ 	= =	Resonance frequency Density
•Ω	=	Resistance (PT1000)
• T	=	Temperature

 $\Delta \phi \sim \mathbf{m}$ $f_R \sim \rho$ Ω ~ Τ

 V_N

Overview of calculated values

- V = Volume flow
 V = m/p
- V_N = Normvolume flow = Volume flow at fixed p and T
 - = m/ρ_N (note: ρ_N is a fixed value for each fluid)
- c = Concentration
 Concentration can be calculated from density
- v = Viscosity
 Viscosity can be calculated from oscillation damping.
 - Viscosity measurement is only available with the Promass I sensor

Why measure mass?

- Chemical Reactions are Based on Mass
- Mass is Primary Standard (like Time). It Does Not Change which Changes in Process Conditions
- Consistency of Batching / Blending is Dependent on Mass due to Solubility Issues
- Products are Generally Sold Based on Weight (Mass) of Contents
- Plant Efficiency and Costs are Based on Mass Balances
- Direct Mass Measurement is More Accurate than Measuring Volume and Compensating for Temperature, Pressure or Density

....Because Mass is the Flow Parameter You really want to measure....

Flow technologies overview

Promag	Promass	Prowirl	Prosonic	Thermal
Fluids	Fluids	Fluids	Fluids	Fluids
 Conductive liquids Conductivity > 5µs Water > 20µs 	 All Fluids Careful with inhomogeneous liquids and gas fraction All Gases 	 All Liquids Careful with inhomogeneous liquids and high viscosity All Steam All Gases 	• All Liquids Careful with inhomogeneous liquids, solid content and high viscosity	 All Gases Careful with mixtures and dirty/wet gases
Variables	Variables	Variables	Variables	Variables
 Volume 	 Mass Density Temperature Viscosity 	 Volume Saturated steam Mass Temperature 	 Volume Sound Velocity 	MassTemperature

All you need for vortex measurement

Vortex sensing element: DSC sensor

- Capacitive sensor
- Primary vibration compensation (center of gravity)

Vortex – a universal principle

Flow technologies overview

Promag	Promass	Prowirl	Prosonic	Thermal
	·			
Fluids	Fluids	Fluids	Fluids	Fluids
 Conductive liquids Conductivity > 5µs Water > 20µs 	 All Fluids Careful with inhomogeneous liquids and gas fraction All Gases 	 All Liquids Careful with inhomogeneous liquids and high viscosity All Steam All Gases 	• All Liquids Careful with inhomogeneous liquids, solid content and high viscosity	 All Gases Careful with mixtures and dirty/wet gases
Variables	Variables	Variables	Variables	Variables
 Volume 	 Mass Density Temperature Viscosity 	 Volume Saturated steam Mass Temperature 	 Volume Sound Velocity 	MassTemperature

Prosonic Flow: The Principle

Sensor-configuration

E+H Ultrasonic Flow Meter General Product Portfolio

- Liquid
- 1. Clamp-on / insertion type designs e.g. 93P, 91W
- 2. Inline e.g. 92F, E100
- Gas
- 1. B 200
- 2. G 300/500

Clamp - On

Flow technologies overview

Promag	Promass	Prowirl	Prosonic	Thermal
	*	Sec.		Le la
Fluids	Fluids	Fluids	Fluids	Fluids
 Conductive liquids Conductivity > 5μs Water > 20μs 	 All Fluids Careful with inhomogeneous liquids and gas fraction All Gases 	 All Liquids Careful with inhomogeneous liquids and high viscosity All Steam All Gases 	• All Liquids Careful with inhomogeneous liquids, solid content and high viscosity	 All Gases Careful with mixtures and dirty/wet gases
Variables	Variables	Variables	Variables	Variables
 Volume 	 Mass Density Temperature Viscosity 	 Volume Saturated steam Mass Temperature 	 Volume Sound Velocity 	MassTemperature

The measuring principle

- Mass flow measurement based on thermal dispersion
- A heated temperature sensor is kept at a constant differential temperature from the gas reference sensor.
- The cooling effect generated by mass flow causes an increase in sensor power to maintain the temperature differential.
- The power supplied to the heated sensor is proportional to the mass flow.

$$Qm = \frac{H}{A * Cp * \Delta T}$$

Qm: Mass Flow Rate (kg/h)H: Heat Input (Cal/h)A: ConstantCp: Specific heat at constant pressure (Cal/kg*C)ΔT: Measured temperature difference (C)

Mass flow is measured directly

Thermal sensors (PT100)

- 2 x Resistive Temperature Detectors (RTD) = PT100 (100R @ 0'C)
- High tolerance construction
- Better gas temperature sensing

t-mass 300/500 - for flexible gas flow measurement

The flowmeter with long-term stability and a keen sense for utility gases

Reliable industrial gas flow monitoring and control

t-mass 300/500 boosts efficiency and safety through comprehensive monitoring of gas consumption, process stability and device health.

For all industries and customers who want exceptional performance and device verification to ensure efficient use of their utility gases, enduring plant availability and compliance with regulatory requirements.

- 22 configurable gases and mixtures thereof up to 8 components
- Patented drift-free sensor with optional bidirectional flow
- Automatic device verification without process interruption
- Premium performance: 1% accuracy; 0.25% repeatability
- Warning in case of condensate or pulsating flow
- SIL 2 compliant
- Flexible operation via display, webserver, WLAN, operating tools
- Transmitters: Proline 300 and 500

Nat Warintarawej

Welcome to Heartbeat Technology!

Directive 17 Compliant, TUV Certified! Technology Day – Calgary

Heartbeat Technology

Addressing Your Metering Challenges

Measurement & Compliance Manager:

"How do I ensure our AER D17 requirements are met?" Quality/Compli ance

Maintenance Manager:

"Is my meter working properly?"

Availability

Process Engineer:

"Is my process running as designed?"

Safety

Why Check Flow Meters?

Traditional Meters May Lose Accuracy

Turbine meters:

- Over spinning damage
- Worn or broken blades

PD Meters:

- Debris in line
- Entrained gases
- Slippage due to viscosity

Differential Pressure:

- Worn edges of element
- Element deformed from

excess pressure

pickup

Intelligent Field Devices – Today!

Why keep sending the meter back for re-calibration? - Most meters returned for re-calibration do not require adjustment

In fact only Endress+Hauser Vortex meters have a lifetime Calibration!

Heartbeat Technology™ – The Universal Solution

For all Endress+Hauser flow measurement technologies

 Heartbeat Technology is at the heart of the new Proline flowmeter platform, ensuring reliable measurement operation – whatever the flow measurement technology

Heartbeat Technology[™] - The Elements

At a glance: What Heartbeat Technology can achieve

Heartbeat Diagnostics™ - **Standard with Proline**

Heartbeat Diagnostics™ FieldCare DTM – Conforms to Namur NE 107

Terminology: Accredited, Calibration, Proving, Verification

- <u>Accreditation</u> demonstrates technical competence for a defined scope and operation of a laboratory *quality* management system through 3rd party *audit compliance* and traceable calibration. Result: Quality Calibration
- <u>Calibration</u> is a *performance* comparison of a meter under test and a standard under laboratory conditions. Result: Calibration Factor
- <u>Proving</u> is a *performance* comparison of a meter under test and a standard under actual process conditions to account for installation and actual process fluid effects. Result: Meter Factor
- <u>Verification</u> is a *functional* test comparing a meter under test to a known standard to determine quality of measurement which may be traceable to laboratory calibration. Used to extend Calibration intervals. Result: Pass / Fail indicating that the Calibration is still valid.

Endress+Hauser Portfolio of testing methods

Verification

On-site

Heartbeat Verification

Fieldcheck (not for new Proline)

Flow-meter functional assessment (comparison still vs. traceable references)

- Internal parameters
- Operating conditions

Calibration

In Laboratory

Mobile Bench Prover

Fixed Bench Prover (Edmonton 2015/2016)

Metrological performance assessment (adjustment via calibration factor, certificate)

- Primary measurand (v)
 - Reference conditions (fluid, p, T)

Flowjack: First signal simulator for entire flow portfolio

Flowjack

Uncontested benefits:

- Quick and reliable testing
- Flowmeter remains in place
- Flowmeter calibration data manually inputted
- Traceability of all components
- Good proof-test coverage

Improvement areas:

- Cumbersome equipment
- Manual reports
- Mandatory trip to the field
- Disconnected output, interruption of measurement
- Potential handling errors

Fieldcheck: Recognized method (signal simulation)

Fieldcheck TM

Uncontested benefits:

- Quick and reliable testing
- Flowmeter remains in place
- Flowmeter calibration data automatically downloaded
- Automated report
- Traceability of all components
- Excellent proof-test coverage

Improvement areas:

- Cumbersome equipment
- Mandatory trip to the field
- Disconnected output, interruption of measurement
- Potential handling errors

People for Process Automation

Lets Perform a Heartbeat Verification Now!

Heartbeat Verification to succeed Fieldcheck

Similar functionality, now embedded in the device electronics

- Permanently available, no mandatory accessories
- Accessible via all available interfaces
- Testing of the entire signal chain without service interrupt
- Simplistic handling, clear / automated procedure
- Verification results stored in the device (8 most recent datasets)
- FieldCare[©] PC can be connected, so the verification DTM can upload results, generate a report, and manage the entire verification history

Heartbeat Technology

Heartbeat Verification vs. Fieldcheck

Heartbeat Verification[™] - TUV Certified, Directive 17 Compliant!

Due to our Safety-by-Design philosophy Endress + Hauser flow meters that have Heartbeat Technology™ are **independently certified by TUV** and **comply with the requirements of AER Directive 17.**

Safety in perfection – developed according to IEC 61508

- Safety in hazardous environments
- Minimized risk of random failures
- Simple and seamless integration into existing plant infrastructure

Nat Warintarawej

Heartbeat addresses your most serious challenges

Challenges in the Process Industry ...

What Heartbeat Technology can do ...

What's in it for you ...

Heartbeat Technology – what makes it unique

Heartbeat Technology[™] – reliable self-monitoring

IEC 61508 au	 IEC 61508 audits completed ISO 9001 conformity certification, audits completed on Proline 200 	
Long-term stability	Measuring electronicsTest electronics	
Redundant internal references	 Dual frequency generators (Promass, Prowirl) Multiple voltage references (Promag) 	
Traceable factory calibration according to ISO 17025 on accredited facilities	 Flow measurement (m, v) Electronic modules 	
 Ex-factory status is stored invariably in the device Each single test is passed only if the current parameter value remains within tight, unchangeable tolerances supporting the device specification 		

Heartbeat Verification – onsite access

SIL loop integrated via 4..20mA HART

Heartbeat Verification – access via HART modem

SIL loop integrated via 4..20mA HART

Heartbeat Verification – access via Foundation Fieldbus

Honeywell DCS environment

Heartbeat Verification – access via Foundation Fieldbus

Honeywell DCS environment

Heartbeat Technology™ fundamentals

Long-term stability Redundant internal references Traceable factory calibration

Electronic modules

- Designed to minimize risk of failure
- 100% testing against traceable references

Completed device

- Accredited calibration
- Primary measurand (m, v)

Total Test Coverage from sensor to outputs

Flowmeter development according to IEC 61508 Continuous self-monitoring based on NE 107

ISEM, CPU I/O Module Power Supply Temperature- sensors Exciter coil Pick-up coil

Example: Proline Promass F 200

Diagnostic messages securely stored in the event logbook

Proline Promass: Overview of test groups

I/O module

4...20 mA output loop-back test

Sensor electronic module

- Zero-point tracking
- Reference clock
- Reference temperature

Sensor

- Inlet / Outlet pick-up coil
- Measuring / Carrier tube temperatures
- Pick-up coil symmetry
- Frequency lateral / torsion mode

On demand

Sensor Integrity (HBSI)

Electromechanical integrity of Promass

Proline Promass 100 / 300 / 500

30/11/2020

Slide 58

Traceable internal references for measurement + testing

High-precision frequency generators

- Continuous synchronous-run test in the device reliably detects ambient and process influences potentially causing drift in the electronics
- Traceable test of each module against accredited reference standard prior to traceable factory calibration of the entire

device

Current output loop-back test

- Internal connectivity problems
- External influences (load resistance)

Proline Promass 100 example

Heartbeat Verification – electronic Pass / Fail report

Promass F 200	Verification report Endress+Hau People for Process Aut		S+Hauser
Verification report flowmeter	Verification report flowmeter		
Plant operator Device information Location Endress + Hauser Module name	Serial number: D5105702000 Verification ID: 1		
Device name Promass 200	Sensor		Passed
Serial number D5105702000	Measuring tube temperature sensor		Passed Passed
Calibration	Pickup coil symmetry		Passed
Calibration factor	Frequency lateral mode		Passed
2.1700	Sensor circuit leakage		Passed
Verification information	Main electronic module		Passed
Operating time	Supply voltage		Passed
84d12h24tn31s	Zero point tracking		Passed
Verification ID	Reference clock	PDF	Passed
Verification results	Reference temperature	1	Passed
Overall result		Po	
Detailed results	I/O module		Passed

Verification DTM for FieldCare[©] asset management tool

Lets look at our Heartbeat Verification Report!

Proline Prowirl 200: Summary of test groups

Main Electronic Module

Supply Voltage

I/O module

- 4...20 mA output loop-back test
 Sensor electronic module
- Reference frequency drift
- DSC sensor reference
- Temperature measuring path
- DSC sensor measuring path

Sensor

- DSC Sensor
- Temperature Sensor

Only Prowirl C (Canada) has inspection ports for shedder bar inspection

Proline Prowirl 200

Slide 64

DSC sensor: Gap capacity difference test

- Capacitive sensor to count the vortex frequency
- Warning level yields a "Fail" in the test, but still allows to measure
- Small impact on measurement accuracy, strong indicator for device functionality

 $\mathbf{dC} = | \mathbf{C}_2 - \mathbf{C}_1 |$

Level	dC in pF	
Normal	0 to < 4.6	
Warning	4.6 to 6.8	
Failure	> 6.8	

Proline Promag: Summary of test groups

Main Electronic Module

Supply Voltage

I/O module

- 4...20 mA output loop-back test
 Sensor electronic module
- Reference voltage
- Linearity of electrode measuring circuit
- Offset of electrode measuring circuit

Sensor

- Coil current shot time
- Coil hold voltage
- Coil current

Proline Promag 100/200/400

Proline Promass condition monitoring applications

Types of process impact	Relevant parameters		
Entrained gas, cavitation, as well as empty tube	Tube dampingDamping fluctuationFrequency fluctuation		
Coating build-up, corrosion, erosion	Tube dampingSignal asymmetryResonance frequency		

Interpretation requires sound understanding of the measuring point and the process influence on the oscillation system of the specific Coriolis device type

Heartbeat Monitoring for entrained gas

Entrained gas is a challenge in Coriolis measurement in general. In can therefore be useful to monitor its impact below the limit values of Heartbeat Diagnostics

Heartbeat Monitoring: Coating build-up in the tube

If the fluid's density and viscosity are stable, coating build-up can be detected by decreasing frequency, and concurrent increase in tube damping or signal asymmetry.

The density measurement can be tracked in addition, if the fluid is unchanged.

Heartbeat Monitoring: Corrosion

Corrosion may occur in manifold forms, so condition monitoring requires a variety of parameters, particularly here.

Heartbeat Monitoring: Abrasion

Abrasion particularly impacts the curved sections inside the tube. Promass 100 offers the HBSI test, Promass 200 does not!

Heartbeat Technology – Technology beating reliably!

E+H FLOW PRODUCT

E+H Flow Product

Thank you very much for your attention

